Coevolutionary information, protein folding landscapes, and the thermodynamics of natural selection.
نویسندگان
چکیده
The energy landscape used by nature over evolutionary timescales to select protein sequences is essentially the same as the one that folds these sequences into functioning proteins, sometimes in microseconds. We show that genomic data, physical coarse-grained free energy functions, and family-specific information theoretic models can be combined to give consistent estimates of energy landscape characteristics of natural proteins. One such characteristic is the effective temperature T(sel) at which these foldable sequences have been selected in sequence space by evolution. T(sel) quantifies the importance of folded-state energetics and structural specificity for molecular evolution. Across all protein families studied, our estimates for T(sel) are well below the experimental folding temperatures, indicating that the energy landscapes of natural foldable proteins are strongly funneled toward the native state.
منابع مشابه
Characterization of the folding energy landscapes of computer generated proteins suggests high folding free energy barriers and cooperativity may be consequences of natural selection.
To determine the extent to which protein folding rates and free energy landscapes have been shaped by natural selection, we have examined the folding kinetics of five proteins generated using computational design methods and, hence, never exposed to natural selection. Four of these proteins are complete computer-generated redesigns of naturally occurring structures and the fifth protein, called...
متن کاملBuffed energy landscapes: another solution to the kinetic paradoxes of protein folding.
The energy landscapes of proteins have evolved to be different from most random heteropolymers. Many studies have concluded that evolutionary selection for rapid and reliable folding to a given structure that is stable at biological temperatures leads to energy landscapes having a single dominant basin and an overall funnel topography. We show here that, although such a landscape topography is ...
متن کاملProtein Stability, Folding, Disaggregation and Etiology of Conformational Malfunctions
Estimation of protein stability is important for many reasons: first providing an understanding of the basic thermodynamics of the process of folding, protein engineering, and protein stability plays important role in biotechnology especially in food and protein drug design. Today, proteins are used in many branches, including industrial processes, pharmaceutical industry, and medical fields. A...
متن کاملThe sequences of small proteins are not extensively optimized for rapid folding by natural selection.
The thermodynamic stabilities of small protein domains are clearly subject to natural selection, but it is less clear whether the rapid folding rates typically observed for such proteins are consequences of direct evolutionary optimization or reflect intrinsic physical properties of the polypeptide chain. This issue can be investigated by comparing the folding rates of laboratory-generated prot...
متن کاملProtein Folding Properties from Molecular Dynamics Simulations
Our understanding of protein folding has improved tremendously due to computer simulations of molecular dynamics (MD), but determining protein folding kinetics and thermodynamics from all-atom MD simulations without using experimental data still represents a formidable scientific challenge. Simulations can easily get trapped in local minima on rough free energy landscapes and folding events may...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Proceedings of the National Academy of Sciences of the United States of America
دوره 111 34 شماره
صفحات -
تاریخ انتشار 2014